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ABSTRACT: We report that redox-inactive Sc3+ can
trigger O2 activation by the FeII(TMC) center (TMC =
tetramethylcyclam) to generate the corresponding
oxoiron(IV) complex in the presence of BPh4

− as an
electron donor. To model a possible intermediate in the
above reaction, we generated an unprecedented Sc3+

adduct of [FeIII(η2-O2)(TMC)]+ by an alternative route,
which was found to have an Fe3+−(μ-η2:η2-peroxo)−Sc3+
core and to convert to the oxoiron(IV) complex. These
results have important implications for the role a Lewis
acid can play in facilitating O−O bond cleavage during the
course of O2 activation at non-heme iron centers.

There is much current interest in investigating the ability of
redox-inactive metal ions to modulate redox reactions by

virtue of their Lewis acidity, particularly with respect to their
possible roles in O2 evolution

1 and activation.2,3 For example,
the oxygen-evolving complex of Photosystem II requires a
redox-inactive Ca2+ ion to produce O2.

1 In addition, redox-
inactive ions have been found to affect the stabilities and
reactivities of high-valent metal−oxo complexes in biomimetic
systems2 and to accelerate O2 activation by FeII and MnII

complexes.3 In the latter case, heterobimetallic O2 adducts and
high-valent metal−oxo species are presumably involved but
have not been observed. We previously demonstrated that
[FeII(TMC)(NCCH3)]

2+ (1) (TMC = 1,4,8,11-tetramethylcy-
clam) reacts with O2 in CH3CN in the presence of
stoichiometric H+ and BPh4

− to form [FeIVO(TMC)-
(NCCH3)]

2+ (4).4 Herein we report that a redox-inactive
Sc3+ ion can replace the strong acid in this reaction to trigger the
formation of 4. An unprecedented Sc3+ adduct (3) of [FeIII(η2-
O2)(TMC)]+ (2) was trapped by an alternative route,
spectroscopically characterized, and found to convert to 4
(Scheme 1).
Complex 1 is air-stable in acetonitrile solution for days.

However, the addition of 1 equiv of Sc(OTf)3 together with 1
equiv of NaBPh4 to an aerobic solution of 1 resulted in the
formation of 4 in >70% yield over the course of ∼1 h at 0 °C,
as indicated by its signature near-IR band at 820 nm (Figure
1A).5 Electrospray ionization mass spectrometry (ESI-MS)
analysis of the solution revealed the evolution of a prominent
peak at m/z 477.0 that was assigned to the {[FeIV(O)(TMC)]-
(OTf)}+ ion on the basis of its position and isotope distribution
pattern [Figure S1 in the Supporting Information (SI)]. When

the reaction was carried out with 18O2, the m/z 477 peak
showed an upshift of 2 units (Figure S2), confirming that the
oxo moiety of 4 was derived from O2 and that O−O bond
cleavage must occur for the formation of 4 from 1 and O2.
Further investigation demonstrated that both Sc3+ and BPh4

−

are required for the formation of 4 from 1, as addition of either
BPh4

− or Sc3+ alone to 1 in air-saturated CH3CN solution did
not elicit any detectable change in the UV−vis spectrum. In
addition, the yield of 4 was linearly correlated with the amount
of BPh4

− added, plateauing at 1.0 equiv of BPh4
− (Figure 1B).

1H NMR studies of the final solution showed that BPh4
− had

decomposed to give 1,1′-biphenyl (Figure S3) with a
stoichiometry of 0.95 ± 0.15 equiv relative to 1, demonstrating
that BPh4

− provides the two electrons needed to convert 1 and
O2 into 4. On the other hand, a substoichiometric amount of
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Scheme 1. Proposed Mechanism for the Formation of 4 from
1 and O2

Figure 1. Reaction of 0.96 mM 1 with NaBPh4 and Sc(OTf)3 in
aerobic CH3CN at 0 °C. (A) UV−vis spectral changes observed with 1
equiv of NaBPh4 and 1 equiv of Sc(OTf)3. Inset: structure of the TMC
ligand. (B) Plot of the yield of 4 vs equivalents of BPh4

− in the
presence of 1 equiv of Sc3+. Inset: plot of the yield of 4 vs equivalents
of Sc3+ with 1 equiv of BPh4

−.
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Sc3+ was sufficient for the maximal formation of 4 (Figure 1B
inset), suggesting that Sc3+ can act somewhat “catalytically”.
As shown in Figure 1A, no intermediates were evident in the

UV−vis spectra during the conversion of 1 to 4.6 To account
for the role of Sc3+ in this transformation, we propose the
formation of a Sc3+−peroxo−Fe3+ adduct that is reminiscent of
the FeIII−OOH species proposed in the H+ and BPh4

−-
promoted generation of 4 from O2 and 1.4,7 To test this
hypothesis, Sc(OTf)3 was added to a solution of the blue
FeIII(η2-O2) complex 2 (purified via precipitation as its BPh4
salt; see the SI for details), which resulted in the immediate
generation of a magenta intermediate, 3, and its subsequent
conversion to 4 in ∼70% yield over the course of ∼1 h at −10
°C (Figure 2A).

What is the identity of complex 3? It exhibits a λmax of 520
nm (ε520 = 780 M−1 cm−1), as established from its UV−vis
spectrum (Figure 2A) and Mössbauer analysis. The large blue
shift observed for the peroxo → Fe(III) charge-transfer band of
2 (λmax = 835 nm) is reminiscent of that seen upon protonation
of 2 to form [FeIII(TMC)(η1-OOH)]2+ (5) in CH3CN,

7a

indicating partial neutralization of the negative charge of the
peroxo ligand. Titration of 2 with Sc(OTf)3 showed that 1
equiv of Sc(OTf)3 was nearly sufficient to cause the 835 nm
band of 2 to disappear, suggesting a 1:1 stoichiometry for the
Sc3+ adduct of 2 (Figure 2B). The EPR spectrum of 3 shows
features at g = 9.1, 5.1, 3.6, and ∼2, consistent with an S = 5/2
Fe(III) center with an E/D ratio of 0.18 (Figure 3 left),
compared with E/D = 0.28 and 0.097 for 2 and 5,7a

respectively. The Mössbauer spectra of 3 (Figure 3 right) are
typical of high-spin Fe(III); their analysis is described in the SI,
and the Mössbauer parameters are listed in Table 1 and the
Figure 3 caption. A comparison of the spectroscopic properties
in Table 1 shows that 3 is quite different from 2 and 5,
indicating that Sc3+ significantly affects the properties of the
peroxoiron(III) unit.
We also carried out Fe K-edge X-ray absorption spectroscopy

(XAS) studies to investigate the structural features of 3.
Complex 3 exhibited an Fe K-edge at 7125.3 eV and a pre-edge
feature at 7113.3 eV, which are comparable to those of 2 and 5
obtained in CH3CN (Figure S4 and Table S1).7a The pre-edge
feature of 3 has an area of 14.4(6) units, compared with 17.9
for 2 and 22.4 for 5 (Table S1). As the pre-edge area reflects
the extent to which the iron center deviates from
centrosymmetry, the coordination environment of 3 must be

closer to that of 2 with an η2-peroxo ligand than that of 5 with
an η1-OOH ligand.
Analysis of the extended X-ray absorption fine structure

(EXAFS) data for 3 provided additional structural insight. Best
fits revealed four N scatterers at 2.18 Å and four C scatterers
each at 3.00 and 3.15 Å (Figure 4 and Table S2); all of these
features arise from the TMC ligand and have distances close to
those found for 2 (Table 2). In addition, there is an O subshell
at 1.98(1) Å arising from the peroxo ligand. Notably, the Fe−O
distance (rFe−O) in 3 is significantly longer than the distance of
1.91 Å found for 2,7a implying that the addition of Sc3+

Figure 2. (A) UV−vis spectral changes upon addition of 3 equiv of
Sc3+ to 1.5 mM purif ied 2 (ε835 = 650 M−1 cm−1) in CH3CN at −10
°C, instantly generating 3 (ε520 = 780 M−1 cm−1), which in turn
decayed to 4. (B) UV−vis changes upon titration of 1.5 mM 2 with
Sc3+ (0, 0.5, 1.0, 1.5, 2.0, and 9.0 equiv) in CH3CN at −40 °C.

Figure 3. (left) EPR spectra of 2 (blue)7a and 3 (red) at 2 K and a
microwave power of 0.2 mW. (right) Mössbauer spectra of 3 at 4.2 K
in MeCN recorded in parallel applied fields of (A) 0.5 and (B) 8.0 T.
The red lines in (A) and (B) are theoretical curves based on eq 1 in
the SI using the following parameters: D = +1.3 cm−1, E/D = 0.18, g0 =
2.00, Ax/gnβn = −20.0 T, Ay/gnβn = −20.6 T, Az/gnβn = −19.9 T, ΔEQ
= 0.50 mm/s, η = −0.5, δ = 0.47 mm/s. The Mössbauer sample
contained 90% 38 and 10% FeIVO species (blue line).

Table 1. Spectroscopic Comparison of FeIII(TMC)−Peroxo
Complexes (S = 5/2) in CH3CN

λmax
(nm)

ΔEQ
(mm/s)

δ
(mm/s)

D
(cm−1) E/D

pre-edge
area ref

2 835 −0.92 0.58 −0.91 0.28 17.9 7a
3 520 0.50 0.47 1.3 0.18 14.4 −a

5 500 0.20 0.51 2.5 0.097 22.4 7a
aThis work.

Figure 4. Fourier transform of the Fe K-edge EXAFS data for 3 over a
k range of 2−14 Å−1. The inset shows k3χ(k) vs k data. The solid black
lines represent the experimental data, while the red dashed lines
correspond to the best fit with two O at 1.98 Å and four N at 2.18 Å
(fit 22 in Table S3).
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significantly weakens the iron−peroxo interaction. This 0.07 Å
lengthening is inconsistent with conversion of the η2-peroxo
ligand to an η1 isomer, as the related η1-peroxo complexes 5
and [FeIII(TMCS)(η1-O2)] (6) [TMCS = 1-(2-mercaptoeth-
yl)-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane] have
shorter Fe−O distances (Table 2). CuII adducts to (η2-
peroxo)iron(III) porphyrin complexes also have one short Fe−
O bond (∼1.93 Å) in a highly unsymmetric η2-peroxo ligand
that binds to the iron.9 Thus, the 0.07 Å lengthening of rFe−O in
3 relative to that in 2 favors a symmetric η2-peroxo binding
mode for 3. This conclusion is also supported by a comparison
of fits 7 and 8 in Table S2, where the two-O subshell in fit 7 has
a σ2 value of ∼4, while the one-O subshell in fit 8 has a σ2 value
of −0.4. The negative σ2 value for the latter indicates that either
a bond is more rigid than would be expected for its distance or
that there are too few scatterers associated with that shell.10 A
negative σ2 value was also found when only one O scatterer
(instead of two) was used in fitting the EXAFS data for 2. Our
EXAFS results thus demonstrate that the binding of Sc3+ retains
the symmetric side-on binding mode of the peroxo ligand in 3
but increases rFe−O by 0.07 Å.11

The final key piece of evidence for the identity of 3 was
provided by resonance Raman spectroscopy. Laser excitation
into the intense 520 nm band of 3 revealed two prominent
peaks at 807 and 543 cm−1 (Figure 5) that correspond to νO−O
and νFe−O modes, respectively. These assignments were
corroborated by 18O labeling, which resulted in respective
downshifts of 45 and 23 cm−1 that correlate well with Hooke’s
Law predictions for these modes and support the presence of
an iron-bound peroxo ligand in 3. The νO−O of 3 is the lowest
of any non-heme high-spin peroxoiron(III) complex observed

to date (Table 2). Relative to its precursor 2,7a 3 has a νO−O
that is downshifted by 19 cm−1 and a νFe−O that is upshifted by
50 cm−1,12 consistent with retention of the η2 binding mode of
the peroxo ligand. Taken together, the spectrosopic data lead us
to propose an Fe3+−(μ-η2:η2-O2)−Sc3+ core for 3, analogous to
the Ni2+−(μ-η2:η2-O2)−K+ core found in a complex charac-
terized crystallographically by Limberg, Driess, and co-work-
ers.13,14

With the nature of 3 characterized, an important question
that remains is whether 3 is involved in the conversion of 1 to 4
by O2 activation. The requirement for both Sc3+ and two
electrons to trigger O2 activation of 1 suggests the likely
formation of a Sc3+−peroxo−Fe3+ species such as 3 as an
intermediate (Scheme 1). However, the fact that this species
did not accumulate during O2 activation (Figure 1A) suggests
that 3 may correspond to a more stable isomer of the actual
intermediate involved in the O2 activation reaction. Never-
theless, 3 represents a rare example of a heterobimetallic
complex bridged by a peroxo ligand9,13 and the only one to date
that involves a non-heme iron center.
The spectroscopic characterization of 3 as a complex with an

Fe3+−(μ-η2:η2-O2)−Sc3+ core provides a plausible mechanism
for a Lewis acid to promote O−O bond cleavage. This insight
points to another role the second iron center can play in diiron
enzymes besides serving as an electron source: functioning as a
Lewis acid to facilitate the formation of high-valent iron−oxo
intermediates such as Q and X in the respective oxygen
activating cycles of methane monooxygenase and class 1A
ribonucleotide reductases.18 This report of the Sc3+−peroxo−
Fe3+ intermediate 3 also augments the recent literature focused
on the effects of redox-inactive Lewis acidic metal ions on redox
transformations.1−3 Prominent among these are their accel-
erative properties in oxidations by high-valent metal−oxo
complexes discovered by Fukuzumi and Nam2a−f as well as the
role of Ca2+ in forming an O−O bond from water during
photosynthesis.1 Relevant to the latter, Borovik recently
showed that group-II metal ions (MII) can enhance the rates
of O2 activation by FeII and MnII complexes to afford well-
characterized MII−(μ-OH)−(MnIII/FeIII) products, presumably
via heterobimetallic O2 adducts.3 The present results
demonstrate that Sc3+ can “turn on” the activation of O2 at a
non-heme iron center and that a transient Sc3+−peroxo−Fe3+
species related to 3 could be a viable intermediate leading to
O−O bond cleavage.
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Table 2. Comparison of Structural and Raman Data for S = 5/2 Fe
III−Peroxo Complexes

complex rFe−N (Å) rFe−O (Å) νO−O (cm−1) refs

3a 2.18 1.98, 1.98 807 −b

non-heme FeIII−η2-peroxo 816−827 7, 15
2 (2′)a 2.20 (2.21) 1.91, 1.91 (1.91, 1.91) 826 (825) 7a (7b)
non-heme FeIII−η1-peroxo 830−891 7, 16c

5 (5′)a 2.15 (2.16) 1.92 (1.85) 870 (868) 7a (7b)
6 2.17 1.89 17
(heme)FeIII−(μ-η2:η1-O2)−CuII 2.09 1.92, 2.09 788−808 9a, 9b
(heme)FeIII−(μ-η2:η2-O2)−CuII 2.09 1.94, 2.09 747−767 9a, 9b

a2, 3, and 5 in CH3CN; 2′ and 5′ in 3:1 (v/v) acetone/CF3CH2OH.
bThis work. cAlso see Table S4 in the SI of ref 7a.

Figure 5. Resonance Raman spectra of 3 prepared in CH3CN with
H2

16O2 (red) and H2
18O2 (black) obtained with 514.5 nm excitation at

100 mW. The 16O − 18O difference spectrum is shown in blue. S =
solvent-derived peaks.
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3629. (b) Chufań, E. E.; Puiu, S. C.; Karlin, K. D. Acc. Chem. Res. 2007,
40, 563. (c) Chishiro, T.; Shimazaki, Y.; Tani, F.; Tachi, Y.; Naruta, Y.;
Karasawa, S.; Hayami, S.; Maeda, Y. Angew. Chem., Int. Ed. 2003, 42,
2788.
(10) Scott, R. A. In Physical Methods in Bioinorganic Chemistry:
Spectroscopy and Magnetism; Que, L., Jr., Ed.; University Science
Books: Sausalito, CA, 2000; pp 465−503.
(11) We attempted to include in fits of 3 a Sc scatterer at ∼3.7 Å. Fits
13 and 14 in Table S2 show that a Sc scatterer at 3.8 Å with a
reasonable Debye−Waller factor (σ2 ≈ 4) could be added but gave
only a slight improvement in the goodness of fit. Similar results were
obtained in the EXAFS analysis of a Sc−O−Co complex (see: Pfaff, F.
F.; Kundu, S.; Risch, M.; Pandian, S.; Heims, F.; Pryjomska-Ray, I.;
Haack, P.; Metzinger, R.; Bill, E.; Dau, H.; Comba, P.; Ray, K. Angew.
Chem., Int. Ed. 2011, 50, 1711 ).
(12) At first glance, the 50 cm−1 upshift in the Fe−O vibration in
going from 2 to 3 may appear to contradict the observed lengthening
of the Fe−O bond distance deduced from the EXAFS analysis, but the
18O shifts found for the respective Fe−O vibrations were quite
different (−15 vs −23 cm−1). The downshift for 3 is as calculated for a
diatomic Fe−O oscillator, but the smaller shift for 2 indicates mixing
of the diatomic Fe−O vibration with other vibrational modes. Thus,
the use of a direct comparison of the frequencies to deduce the Fe−O
bond distance is not valid in this case.
(13) Yao, S.; Xiong, Y.; Vogt, M.; Grützmacher, H.; Herwig, C.;
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